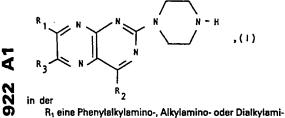


(1) Veröffentlichungsnummer:

0 134 922 A1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84106993.3


(22) Anmeldetag: 19.06.84

(5) Int. Cl.4: C 07 D 475/08 A 61 K 31/505

(30) Priorität: 02.07.83 DE 3323932 (72) Erfinder: Nickl, Josef, Dr. Dipl.-Chem. Silcherstrasse 8 D-7950 Biberach 1(DE) (43) Veröffentlichungstag der Anmeldung: 27.03.85 Patentblatt 85/13 (72) Erfinder: Müller, Erich, Dr. Dipl.-Chem. Talfeldstrasse 34 (84) Benannte Vertragsstaaten: D-7950 Biberach 1(DE) AT BE CH DE FR IT LI LU NL SE 2 Erfinder: Narr, Berthold, Dr. Dipl.-Chem. Obere Au 5 (71) Anmelder: Dr. Karl Thomae GmbH D-7950 Biberach 1(DE) Postfach 1755 D-7950 Biberach (Riss)(DE) (72) Erfinder: Weisenberger, Johannes, Dr. Dipl.-Chem. Haydnweg 5 (72) Erfinder: Roch, Josef, Dr. Dipl.-Chem. D-7950 Biberach 1(DE) Stecherweg 19 D-7950 Biberach 1(DE) (72) Erfinder: Zimmermann, Rainer, Dr. Dipl.-Biochem. Laurenbühlstrasse 17 D-7951 Mittelbiberach(DE) (72) Erfinder: Haarmann, Walter, Dr. Schlierholzweg 27 D-7950 Biberach 1(DE)

(5) Neue 2-Piperazino-pteridine, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltende Arzneimittel.

(5) Die vorliegende Erfindung betrifft neue 2-Piperazinopteridine der allgemeinen Formel

4

R₁ eine Phenylalkylamino-, Alkylamino- oder Dialkylaminogruppe, eine Piperidino-, Morpholino-, Thiomorpholinooder 1-Oxidothiomorpholinogruppe,

R₂ eine Dialkylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogrppe und

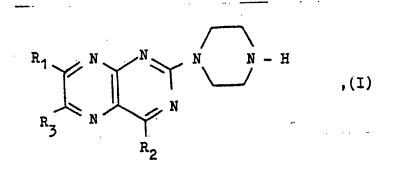
R₃ eine Halogenatom, eine Alkoxy-, Alkylthio-, Phenylalkoxy- oder Phenylalkylthiogruppe, wobei der Alkylteil jeweils
 1 bis 3 Kohlanstoffatome enthalten kenn, bedeuten und deren Säureadditionssalze, insbesondere deren physiologisch verträgliche Säureadditionssalze, welche wertvolle

pharmakologische Eigenschaften aufweisen, insbesondere antithrombotische und metastasenhemmende Wirkungen. Die neuen Verbindungen lassen sich nach für analoge Verbindungen bekannten Verfahren herstellen.

Croydon Printing Company Ltd.

,(1)

DR. KARL THOMAE GMBH D-7950 Biberach 1


. 5

Neue 2-Piperazino-pteridine, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltende Arzneimittel

In der US-A-2.940.972 werden bereits tetrasubstituierte Pteridine beschrieben, welche wertvolle pharmakologische Eigenschaften aufweisen, nämlich coronarerweiternde, seda-10 tive, antipyretische und analgetische Wirkungen.

Es wurde nun gefunden, daß die neuen 2-Piperazino-pteridine der allgemeinen Formel

und deren Säureadditionssalze, insbesondere deren physiologisch verträgliche Säureadditionssalze mit anorganischen 15 oder organischen Säuren, ebenfalls wertvolle pharmakologische Eigenschaften aufweisen, überraschenderweise jedoch antithrombotische und metastasenhemmende Wirkungen. In der obigen allgemeinen Formel I bedeutet

R₁ eine Phenylalkylamino-, Alkylamino- oder Dialkylaminogruppe, eine Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe,

5 R₂ eine Dialkylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder l-Oxidothiomorpholinogrppe und

R₃ ein Halogenatom, eine Alkoxy-, Alkylthio-, Phenylalkoxy- oder Phenylalkylthiogruppe, wobei der Alkylteil jeweils 1 bis 3 Kohlenstoffatome enthalten kann.

10 Gegenstand der vorliegenden Erfindung sind somit die neuen 2-Piperazino-pteridine der obigen allgemeinen Formel I, deren Säureadditionssalze, insbesondere deren physiologisch verträgliche Säureadditionssalze mit anorganischen oder organischen Säuren, Verfahren zu ihrer Herstellung und diese 15 Verbindungen enthaltende Arzneimittel.

Für die bei der Definition der Reste R₁ bis R₃ eingangs erwähnten Bedeutungen kommt beispielsweise

für R₁ die der Methylamino-, Äthylamino-, Propylamino-, Isopropylamino-, Benzylamino-, l-Phenyläthylamino-, 2-Phe-²⁰ nyläthylamino-, 3-Phenylpropylamino-, Dimethylamino-, Diäthylamino-, Dipropylamino-, Methyl-äthylamino-, Piperidino-, Morpholino, Thiomorpholino- oder l-Oxidothiomorpholinogruppe,

für R₂ die der Dimethylamino-, Diäthylamino-, Dipropyl-25 amino-, Diisopropylamino-, Methyl-äthylamino-, Äthyl-propylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe und für R₃ die des Chlor- oder Bromatoms, der Methoxy-, Äthoxy-, Propoxy-, Isopropyoxy-, Benzyloxy-, l-Phenyläthoxy-, 2-Phenyläthoxy-, l-Phenylpropoxy-, 2-Phenylpropoxy-, 3-Phenylpropoxy-, l-Methyl-2-phenyläthoxy-, Methylmercapto-, 5 Äthylmercapto-, Propylmercapto-, Isopropylmercapto-, Benzyl-

mercapto-, 1-Phenyläthylmercapto-, 2-Phenyläthylmercaptooder 3-Phenylpropylmercaptogruppe in Betracht.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

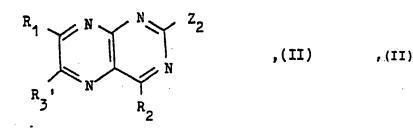
10 R₁ eine Dimethylamino-, Benzylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe,

R₂ eine Dimethylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe und

R₃ ein Chlor- oder Bromatom, eine Alkoxy- oder Alkylmer-15 captogruppe mit jeweils 1 bis 3 Kohlenstoffatomen im Alkylteil, eine Benzyloxy- oder Benzylmercaptogruppe bedeuten, und deren Säureadditionssalze, insbesondere deren physiologisch verträgliche Säureadditionssalze mit anorganischen oder organischen Säuren.

20 Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind jedoch diejenigen, in denen

R₁ und R₂, die gleich oder verschieden sein können, je eine Dimethylamino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe und R₁ auch eine Benzylamino-25 gruppe und


R₃ ein Chloratom, eine Alkoxy- oder Alkylmercaptogruppe mit jeweils 1 bis 3 Kohlenstoffatomen im Alkylteil, eine Benzyloxy- oder Benzylmercaptogruppe bedeuten, und deren Säureadditionssalze, insbesondere deren physiologisch ver-

30 trägliche Säureadditionssalze mit anorganischen oder organischen Säuren.

· ...

Erfindungsgemäß erhält man die neuen Verbindungen nach folgenden Verfahren:

- a) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R₃ ein Halogenatom darstellt:
- 5 Umsetzung einer Verbindung der allgemeinen Formel

in der

R₁ und R₂ wie eingangs definiert sind,

R₃' ein Halogenatom und

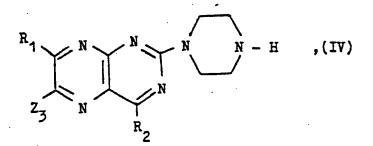
Z₂ eine nucleophil austauschbare Gruppe wie ein Halogen-10 atom, z.B. ein Chlor- oder Bromatom, bedeuten, mit einem Piperazin der allgemeinen Formel

$$H = N N = X , (III) , (III)$$

in der

X ein Wasserstoffatom oder einen hydrolytisch abspaltbaren
Schutzrest darstellt, und erforderlichenfalls anschließende
Abspaltung des verwendeten Schutzrestes.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Tetrahydrofuran, Dioxan, Benzol, Toluol oder Dimethylglycoläther bei Temperaturen zwischen 50 und 150°C, vorzugsweise bei der Siedetemperatur des verwendeten Lösungsmit-


20 tels, oder in der Schmelze durchgeführt. Hierbei kann die Verwendung eines säurebindenden Mittels wie Natriumcarbonat, Triäthylamin oder Pyridin von Vorteil sein. Die gegebenenfalls erforderliche Abspaltung eines verwendeten Schutzrestes erfolgt in Gegenwart einer Säure wie Salzsäure oder Schwefelsäure oder einer Base wie Natriumhydroxid oder Kaliumhydroxid vorzugsweise in einem wässrigen Lösungs-

5. -

5 mittel wie Methanol/Wasser, Äthanol/Wasser oder Dioxan/ Wasser bei Temperaturen bis zur Siedetempertur des verwendeten Lösungsmittels.

b) Zur Herstellung von Verbindungen der allgemeinen Formel
 I, in der R₃ eine Alkoxy-, Alkylmercapto-, Phenylalkoxy oder Phenylalkylmercaptogruppe darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

in der

 R_1 und R_2 wie eingangs definiert sind und

Z3 eine nucleophil austauschbare Gruppe wie ein Halogen-15 atom, z.B. ein Chlor- oder Bromatom, darstellt, mit einer Verbindung der allgemeinen Formel

 $R_3' - H$, (V)

,(IV)

in der

R₃' eine gegebenenfalls durch eine Phenylgruppe substitu-

20 ierte Alkoxy- oder Alkylmercaptogruppe darstellt, wobei der Alkylteil jeweils 1 bis 3 Kohlenstoffatome enthalten kann, oder mit dessen Alkalisalz.

Die Umsetzung wird vorzugsweise in einem geeigneten Lösungsmittel wie Dioxan, Tetrahydrofuran, Methanol, Äthanol, 25 Propanol, Isopropanol oder Benzylalkohol und vorzugsweise

0134922

in Gegenwart eines entsprechenden Alkalisalzes einer Verbindung der allgemeinen Formel V, z.B. des Natriummethylats, Natriumäthylats oder Natriumbenzylmercaptids, zweckmäßigerweise bei Temperaturen zwischen 50 und 150°C, z.B. bei der 5 Siedetemperatur des verwendeten Lösungsmittels, durchgeführt.

Die erfindungsgemäß erhaltenen Verbindungen lassen sich in ihre Säureadditionssalze, insbesondere in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren überführen. Als Säuren kommen beispielsweise Salzsäure,

10 Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Milchsäure, Zitronensäure, Weinsäure, Bernsteinsäure, Maleinsäure oder Fumarsäure in Betracht.

Die als Ausgangsstoff verwendeten Verbindungen der allgemeinen Formeln II bis V sind zum größten Teil bekannt bzw. man 15 erhält diese nach dem in der US-A-2.940.972 beschriebenen Verfahren (siehe Beispiele A bis C).

Wie bereits eingangs erwähnt, weisen die neuen Verbindungen der allgemeinen Formel I und deren physiologisch verträgliche Säureadditionssalze mit anorganischen oder orga-

20 nischen Säuren wertvolle pharmakologische Eigenschaften auf, insbesondere jedoch antithrombotische und metastasenhemmende Wirkungen und eine Hemmwirkung auf Phosphodiesterase.

Beispielsweise wurden die Verbindungen

A = 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

25 B = 6-Chlor-4,7-bis-(dimethylamino)-2-piperazino-pteridin

C = 6-Benzylthio-4,7-bis-(dimethylamino)-2-piperazinopteridin

- 6 -

D = 7-Benzylamino-6-methylthio-4-(l-oxidothiomorpholino)-2piperazino-pteridin und

7 -

- E = 6-Chlor-2-piperazino-4-dimethyl-amino-7-benzylaminopteridin
- 5 auf ihre Hemmwirkung auf die Phosphodiesterase (PDE) von Tumorzellen und von Humanthrombozyten in vitro in Anlehnung an die von Pöch et al. beschriebenen Methode wie folgt untersucht (siehe Naunyn-Schmiedebergs Arch. Pharmak. <u>268</u>, 272-279 (1971)):

10 a) Enzymgewinnung:

Die Phosphodiesterase wurde aus B16 Melanomgewebe von Mäusen durch Zentrifugation des Gewebehomogenates bei 5.000 x g (15 min, 4°C) gewonnen. Die Homogenisation der Gewebe erfolgte durch wiederholtes Frieren/Auftauen und Homogenisation nach

- 15 Potter-Elvehjem bzw. durch Ultraschall. Der die PDE enthaltende Homogenat-Überstand wurde portioniert tiefgefroren und
- bei -25°C tiefgefroren. Die Gewinnung der PDE aus Humanthrombozyten erfolgte in analoger Weise durch Frieren/Auftauen und Zentrifugation.

20 b) Bestimmung der PDE-Hemmung (PDE-assay):

Die Bestimmung der PDE-Hemmung durch die Prüfsubstanzen erfolgte mit l μ mol/l³H-cAMP als Substrat. Die PDE-Hemmung wurde durch Messung des Abbaus des eingesetzten Substrats ³H-cAMP zu ³H-AMP im Vergleich zur Kontrolle ohne Prüf-

25 substanz erfaßt. Das gebildete ³H-AMP wurde durch eine Zinksulfat-Bariumhydroxid-Fällung vom verbliebenen ³H-cAMP abgetrennt.

Die Berechnung der ED₅₀ als die Konzentration, die die PDE-Aktivität um 50 % hemmte, erfolgte mittels linearer 30 Regressionsanalyse.

	PDE-Hemmung (ED ₅₀)	
Substanz	Thrombozyten	Bl6-Tumorzellen
A	0,051	0,088
В	35	0,95
с	10	0,88
D	0,048	0,97
E	14	0,37

Akute Toxizität:

5

Die orientierende akute Toxizität der zu untersuchenden 10 Substanzen wurde orientierend an Gruppen von je 5 Mäusen nach oraler Gabe einer Einzeldosis bestimmt (Beobachtungszeit: 14 Tage):

	Substanz	Ori	entierende aktute Toxizitāt
	A	>	250 mg/kg (0 von 5 Tieren gestorben)
15	В	>	250 mg/kg (0 von 5 Tieren gestorben)
	с	>	250 mg/kg (0 von 5 Tieren gestorben)
	D	>	250 mg/kg (0 von 5 Tieren gestorben)
	E	>	250 mg/kg (0 von 5 Tieren gestorben)

Die erfindungsgemäß hergestellten neuen Verbindungen eignen sich aufgrund ihrer oben erwähnten pharmakologischen Eigenschaften zur Prophylaxe thrombo-embolischer Erkrankungen wie Coronarinfarkt, Cerebralinfarkt, sogn. transient ischaemic attacks, Amaurosis fugax, zur Prophylaxe der Arteriosklerose und zur Metastasenprophylaxe.

Die zur Erzielung einer entsprechenden Wirkung erforderlichen Dosierung beträgt zweckmäßigerweise 2- bis 4-mal täglich 0,1 bis 4 mg/kg Körpergewicht, vorzugsweise 0,2 bis 3 mg/kg Körpergewicht. Hierzu lassen sich die erfindungsgemäß

· 8 ·

0134922

hergestellten Verbindungen der allgemeinen Formel I sowie ihre physiologisch verträglichen Säureadditionssalze mit anorganischen oder organischen Säuren, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem

5 oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/-Äthanol, Wasser/Glycerin, Wasser/Sorbit, nichtionische Ten-

10 side wie z.B. Polyoxyäthylen-Fettsäureester, Wasser-Polyäthylenglykol, Propylenglykol, Cetylstearylalkohohl, Carboxymethylcellulose oder fetthaltige Substanzen wie Hartfett oder deren geeignete Gemische, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspen-

15 sionen, Tropfen, Ampullen, Säfte oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern: Beispiel A

2,6,7-Trichlor-4-morpholino-pteridin

In eine Suspension aus 13,5 g (0,05 Mol) 2,4,6,7-Tetrachlorpteridin in etwa 400 ml Chloroform und 10 g (0,1 Mol)

- 5 Kaliumbicarbonat, gelöst in 100 ml Wasser, wird unter kräftigem Rühren und Kühlen auf, -5 bis 0°C eine Lösung von 4,35 g (0,05 Mol) Morpholin in 100 ml Chloroform langsam eingetropft und noch etwa 30 Minuten lang unter Kühlen gerührt. Die das Reakionsprodukt enthaltende Chloroformphase wird
- 10 abgetrennt, über Natriumsulfat getrocknet und im Vakuum eingedampft. Auseute: 13,5 g (84 % der Theorie),

Schmelzpunkt: 211-213°C (Essigsäureäthylester)

Analog Beispiel A werden folgende Verbindungen hergestellt:

15 2,6,7-Trichlor-4-thiomorpholino-pteridin Schmelzpunkt: 191-193°C

2,6,7-Trichlor-4-(l-oxidothiomorpholino)-pteridin Schmelzpunkt: 212-214°C (Zers)

Beispiel B

20 2,6-Dichlor-4,7-bis-(l-oxidothiomorpholino)-pteridin

In eine Lösung von 13,5 g (0,05 Mol) 2,4,6,7-Tetrachlorpteridin in 300 ml Dioxan werden unter Rühren bei Raumtemperatur 23,8 g (0,2 Mol) Thiomorpholin-l-oxid, gelöst in 100 ml Dioxan, langsam zugegeben, wobei rasch ein gelblicher

25 Niederschlag ausfällt. Das Reaktionsgemisch wird in etwa 2 l

Wasser aufgenommen. Nach einigem Stehen wird das abgeschiedene Reaktionsprodukt abgesaugt und mit Wasser gewaschen und bei etwa 70°C getrocknet.

- 11 -

Ausbeute: 19,2 g (88 % der Theorie),

5 Schmelzpunkt: 237-239°C (Äthanol).

Analog Beispiel B werden folgende Verbindungen hergestellt:

2,6-Dichlor-4,7-dimorpholino-pteridin Schmelzpunkt: 206-208°C

2,6-Dichlor-4,7-bis-(thiomorpholino)-pteridin 10 Schmelzpunkt: 193-195°C (aus Dioxan)

2,6-Dichlor-4,7-bis-(dimethylamino)-pteridin Schmelzpunkt: 245-247°C

2,6-Dichlor-4,7-dipiperidino-pteridin Schmelzpunkt: 185-187°C

15 Beispiel C

7-Benzylamino-2,6-dichlor-4-morpholino-pteridin

Zu einer Suspension von 9,6 g (0,03 Mol) 2,6,7-Trichlor-4morpholino-pteridin in etwa 150 ml Dioxan gibt man bei Raumtempertur unter Rühren langsam eine Lösung von 7 g (0,065

- 20 Mol) Benzylamin in 50 ml Dioxan. Nach etwa einstündigem Rühren wird das Reaktionsgemisch in etwa l l Wasser aufgenommen. Der nach einigem Stehen abgeschiedene Niederschlag wird abgesaugt, mit Wasser gewaschen und bei 60°C getrocknet. Ausbeute: 10,9 g (94 % der Theorie),
- 25 Schmelzpunkt: 213-214°C (Äthanol/Dioxan = 2:1) Analog Beispiel C werden folgende Verbindungen hergestellt:

7-Benzylamino-2,6-dichlor-4-(l-oxidothiomorpholino)-pteridin Schmelzpunkt: 253-254°C

2,6-Dichlor-7-morpholino-4-(l-oxidothiomorpholino)-pteridin Schmelzpunkt: 215-217°C

5 2,6-Dichlor-4-morpholino-7-(l-oxidothiomorpholino)-pteridin Schmelzpunkt: 218-220°C

Beispiel 1

6-Chlor-4,7-dimorpholino-2-piperazino-pteridin

9,3 g (0,025 Mol) 2,6-Dichlor-4,7-dimorpholino-pteridin
10 werden mit 8,6 g (0,1 Mol) wasserfreiem Piperazin in 200 ml Dioxan eine Stunde lang unter Rückfluß erhitzt. Das Lösungsmittel wird weitgehend abdestilliert und der verbleibende Rückstand mit etwa 100 ml Wasser digeriert. Nach kurzem Stehen wird abgesaugt, mit Wasser gewaschen und bei etwa
15 70°C getrocknet (Schmelzpunkt: 218-220°C)

	Vort getto	GKII	eĻ	(acii	me.	rzb	unkei	210-2	20-0).			
	Ausbeute:	8,	9 g	(85	8	đe	r The	orie),				
	Schmelzpun	kt:	22	20-2	229	°C.						
	C ₁₈ H ₂₅ ClN ₈	0 ₂		(42	0,9	€)						
	Ber.:	С	51,	,36	F	I	5,99	Cl	8,42	N	26,62	
20	Gef.:		51,	,21			5,97		8,48		26,68	

Beispiel 2

6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

Zu einer Lösung von 6,3 g (0,015 Mol) 6-Chlor-4,7-dimorpholino-2-piperazino-pteridin in 200 ml Dioxan wird eine Lösung

25

von 0,35 g Natrium und 2 ml (ca. 0,017 Mol) Benzylmercaptan in 100 ml Dioxan gegeben und an- schließend etwa 2 Stunden lang unter Rückfluß erhitzt. Das Lösungsmittel wird im

0134922

Vakuum weitgehend abdestilliert und der verbleibende Rückstand in etwa 200 ml Wasser aufgenommen. Nach dem Erstarren wird das Reakionsprodukt abgesaugt, mit Wasser gewaschen und bei Raumtempertur im Vakuum getrocknet.

5 Ausbeute: 6,4 g (84 % der Theorie).

Nach Reinigung über eine Kieselgelsäule (Laufmittel: Methanol/konz. Ammoniak; 50:1) und Umkristallisieren aus Esssigsäureäthylester schmilzt die Substanz bei 135-137°C. (508,7)C25H32N802S

N 22,03 S 6,30 Н 6,34 10 Ber.: C 59,03 6,55 22,19 6,36 Gef.: 59,28

Beispiel 3

7-Benzylamino-6-methoxy-4-(l-oxidothiomorpholino)-2-piperazino-pteridin

- 15 In eine Lösung von 2,9 g (0,006 Mol) 7-Benzylamino-6-chlor-4-(1-oxidothiomorpholino)-2-piperazino-pteridin in 100 ml Dioxan wird eine Lösung von 0,23 g (0,01 Mol Natrium in 10 ml Methanol eingegossen. Das erhaltene Gemisch wird 30 Minuten lang unter Rückfluß erhitzt und anschließend das
- 20 Lösungsmittel im Vakuum weitgehend abdestilliert. Der Rückstand wird in etwa 70 ml Wasser aufgenommen und das abgeschiedene Reaktionsprodukt abgesaugt, mit Wasser gewaschen und bei etwa 60°C getrocknet.

Ausbeute: 2,6 g (93 % der Theorie).

25 Nach Umfällen aus 0,1 n-Salzsäure mittels Ammoniak und Umkristallisieren aus Essigsäureäthylester/Methanol (4:1) schmilzt die Verbindung bei 148-151°C. (468, 6)C₂₂H₂₈N₈O₂S

Ber.:	С	56,39	H	6,02	N	23,91	S	6,84
30 Gef.:		56,61		6,27		23,40		6,44

6-Chlor-4-morpholino-7-(l-oxidothiomorpholino)-2-piperazinopteridin

- 14 -

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4-morpholino-5 7-(l-oxidothiomorpholino)-pteridin und Piperazin Schmelzpunkt: 225-227°C (Umfällung aus 0,1 n-HCl mittels

Ammoniak).

Beispiel 5

6-Chlor-4,7-bis-(l-oxidothiomorpholino)-2-piperazino-pteridin

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4,7-bis-(loxidothiomorpholino)-pteridin und Piperazin. Schmelzpunkt: > 200°C (Zersetzung).

Beispiel 6

6-Chlor-4,7-dipiperidino-2-piperazino-pteridin

15 Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4,7-dipiperidino-pteridin und Piperazin. Schmelzpunkt: bei etwa 200°C Zersetzung.

Beispiel 7

6-Chlor-4,7-bis-(dimethylamino)-2-piperazino-pteridin

20 Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4,7-bis-(dimethylamino)-pteridin und Piperazin. Schmelzpunkt: 130-134°C.

6-Chlor-2-piperazino-4,7-bis-(thiomorpholino)-pteridin

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4,7-bis-(thiomorpholino)-pteridin und Piperazin.

- 15 -

5 Schmelzpunkt: 194-196°C (Essigsäureäthylester).

Beispiel 9

6-Chlor-7-morpholino-4-(l-oxidothiomorpholino)-2-piperazinopteridin

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-7-morpholino-

10 4-(l-oxidothiomorpholino)-pteridin und Piperazin. Schmelzpunkt: > 240°C Zersetzung.

Beispiel 10

7-Benzylamino-6-chlor-4-morpholino-2-piperazino-pteridin

Hergestellt analog Beispiel 1 aus 7-Benzylamino-2,6-di-15 chlor-4-morpholino-pteridin und Piperazin.

Schmelzpunkt: 195-197°C (Methanol/Wasser).

Beispiel 11

7-Benzylamino-6-chlor-4-(l-oxidothiomorpholino)-2-piperazinopteridin

20 Hergestellt analog Beispiel 1 aus 7-Benzylamino-2,6-dichlor-4-(1-oxidothiomorpholino)-pteridin und Piperazin. Schmelzpunkt: > 200°C Zersetzung.

6-Benzylthio-4,7-bis-(dimethylamino)-2-piperazino-pteridin

Hergestellt analog Beispiel 2 aus 6-Chlor-4,7-bis-(dimethylamino)-2-piperazino-pteridin und Benzylmercaptan.

5 Schmelzpunkt: 150-152°C.

Beispiel 13

7-Benzylamino-6-methylthio-4-(l-oxidothiomorpholino)-2-piperazino-pteridin

Hergestellt analog Beispiel 2 aus 7-Benzylamino-6-chlor-4-

10 (l-oxidothiomorpholino)-2-piperazino-pteridin und Methylmercaptan.

Schmelzpunkt des Hydrochlorids: 159-162°C.

Beispiel 14

4-Morpholino-7-(l-oxidothiomorpholino)-2-piperazino-6-propyl-15 <u>thio-pteridin</u>

Hergestellt analog Beispiel 2 aus 6-Chlor-4-morpholino-7-(l-oxidothiomorpholino)-2-piperazino-pteridin und Propylmercaptan.

Schmelzpunkt: 125-130°C.

20 Beispiel 15

7-Benzylamino-6-benzylthio-4-(l-oxidothiomorpholino)-2-piperazino-pteridin

Hergestellt analog Beispiel 2 aus 7-Benzylamino-6-chlor-4-

(l-oxidothiomorpholino)-2-piperazino-pteridin und Benzylmercaptan.

Schmelzpunkt: > 160°C (Zersetzung).

Beispiel 16

5 <u>6-Athoxy-2-piperazino-4,7-bis-(thiomorpholino)-pteridin</u>

Hergestellt analog Beispiel 3 aus 6-Chlor-2-piperazino-4,7bis-(thiomorpholino)-pteridin und Äthanol). Schmelzpunkt: 147-151°C.

Beispiel 17

10 6-Benzyloxy-4,7-bis-(dimethylamino)-2-piperazino-pteridin

Hergestellt analog Beispiel 3 aus 6-Chlor-4,7-bis-(dimethylamino)-2-piperazino-pteridin und Benzylalkohol. Schmelzpunkt: 166-168°C.

Beispiel 18

15 <u>6-Chlor-2-piperazino-4-dimethylamino-7-benzylamino-pteridin</u>

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4-dimethylamino-7-benzylamino-pteridin und Piperazin. Schmelzpunkt: 134-137°C.

Beispiel 19

20 6-Chlor-2-piperazino-4-thiomorpholino-7-benzylamino-pteridin

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4-thiomorpholino-7-benzylamino-pteridin und Piperazin. Schmelzpunkt: 160-165°C.

6-Chlor-2-piperazino-4-thiomorpholino-7-dimethylamino-pteridin

and the second second

Hergestellt analog Beispiel 1 aus 2,6-Dichlor-4-thiomorpholino-7-dimethylamino-pteridin und Piperazin. 5 Schmelzpunkt: 205-207°C. ÷.,

· • •

Beispiel 21

7-Benzylamino-6-benzylthio-2-piperazino-4-thiomorpholinopter idin

Hergestellt analog Beispiel 2 aus 7-Benzylamino-6-chlor-2-10 piperazino-4-thiomorpholino-pteridin.

Schmelzpunkt: ab 70°C (sintern).

Beispiel A

Dragées mit 4 mg 6-Benzylthio-4,7-dimorpholino-2-piperazinopteridin

Zusammensetzung:

5 1 Dragéekern enthält:

	Wirksubstanz	(1)	4,0 mg
	Milchzucker	(2)	27,0 mg
	Maisstärke	(3)	14,5 mg
	Polyvinylpyrrolidon	(4)	4,0 mg
0	Magnesiumstearat	(5)	0,5 mg
			50,0 mg

10

Herstellung:

Die Stoffe 1-3 werden mit einer wäßrigen Lösung von 4 gleichmäßig befeuchtet, durch 1 mm-Maschenweite gesiebt,

15 getrocknet und erneut durch 1 mm-Maschenweite gesiebt. Nach Zumischen von 5 wird die Mischung zu Dragéekernen verpreßt.

Dragéekerne: 5 mm 0, bikonvex, rund

Dragierung:

Übliche Zuckerdragierung auf 70 mg Endgewicht.

20 Beispiel B

Tabletten mit 8 mg 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

1 Tablette enthält: Wirksubstanz 8,0 mg 25 Milchzucker 23,0 mg

Maisstärke	14,5	mg
Polyvinylpyrrolidon	4,0	mg
Magnesiumstearat	0,5	mg
· ·	50,0	mg

5 Herstellung:

Analog den Dragéekernen.

Tablettenbeschreibung:

Gewicht:50 mgDurchmesser:5 mm, biplan, beidseitige Facette

10 Beispiel C

Suppositorien zu 25 mg 6-Benzylthio-4,7-dimorpholino-2piperazino-pteridin

	l Zäpfchen enthält:	
	Wirksubstanz	0,025 g
15	Hartfett (z.B. Witepsol H 19	<u>1,675 g</u>
	und Witepsol H 45)	1,700 g

Herstellung:

Das Hartfett wird geschmolzen. Bei 38°C wird die gemahlene Wirksubstanz in der Schmelze homogen dispergiert. Es wird

20 auf 35°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

Zäpfchengewicht: 1,7 g

Beispiel D

۰.

Suspension mit 8 mg 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

- 21 -

100	0 ml Suspension enthalten:		
5	Wirksubstanz	0,16 g	
	Carboxymethylcellulose	0,1 g	•
	p-Hydroxybenzoesäuremethylester	r 0,05 g	
	p-Hydroxybenzoesäurepropyleste:	c 0,01 g	
	Rohrzucker	10,0 g	
10	Glycerin	5,0 g	
	Sorbitlösung 70 %	20,0 g	
	Aroma	0,3 g	
	Wasser dest. ad	1 100.0 ml	

Herstellungsverfahren:

- 15 Dest. Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren p-Hydroxybenzoesäuremethylester und -propylester sowie Glycerin und Carboxymethylcellulose gelöst. Es wird auf Raumtemperatur abgekühlt und unter Rühren der Wirkstoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des
- 20 Zuckers, der Sorbitlösung und des Aromas wird die Suspension zur Entlüftung unter Rühren evakuiert.

Beispiel E

Tabletten mit 100 mg 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

25 Zusammensetzung:

l Tablette enthält: Wirkstoff Milchzucker

100,0 mg 80,0 mg

Maisstärke	34,0 mg
Polyvinylpyrrolidon	4,0 mg
Magnesiumstearat	2,0 mg
	220,0 mg

5 Herstellungverfahren:

Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wäßrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2,0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird

10 erneut gesiebt (1,5 mm-Maschenweite) und das Schmiermittel zugemischt. Die preßfertige Mischung wird zu Tabletten verarbeitet.

Tablettengewicht:	220	mg	
Durchmesser:	10	mm,	biplan mit beidseitiger
			Facette und einseitiger
· · · · · · · · · · · · · · · · · · ·	<u>.</u>	· .	Teilkerbe.
ч.	•.		· · ·

.

.

Beispiel F

15

Hartgelatine-Kapseln mit 150 mg 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

20 1 Kapsel enthält:

	Wirkstoff			150,0 mg
	Maisstärke getr.		ca.	180,0 mg
	Milchzucker pulv.	:	ca.	87,0 mg
	Magnesiumstearat			<u>3,0 ma</u>
25	· ·		ca.	420,0 mg

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein Sieb von 0,75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.

. . .

Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.

> Kapselfüllung: ca. 420 mg Kapselhülle: Hartgelatine-Kapsel Größe l.

5 Beispiel G

Suppositorien mit 150 mg 6-Benzylthio-4,7-dimorpholino-2piperazino-pteridin

l Zäpfchen enthält:

,

	, v
10	I

•

Wirkstoff	150,0 mg
PolyäthylenglykoÍ 1500	550,0 mg
Polyäthylenglykol 6000	460,0 mg
Polyoxyäthylensorbitanmonostearat	840,0 mg
	2 000,0 mg

Herstellung:

15 Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.

Beispiel H

Suspension mit 50 mg 6-Benzylthio-4,7-dimorpholino-2-piper-20 azino-pteridin pro 5 ml

10	0 ml Suspension enthalten:	· · ·
	Wirkstoff	1,0 g
	Carboxymethylcellulose-Na-Salz	0,1 g
	p-Hydroxybenzoesäuremethylester	0,05 g
25	p-Hydroxybenzoesäurepropylester	0,01 g

	Rohrzucker	· •	10,0 g	J
	Glycerin		5,0 g	}
	Sorbitlösung 70%ig	Jan	20,0 g	J
	Aroma		0,3 g	J
5	Wasser dest.	ad	100 ml	L

Herstellung:

Dest. Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren p-Hydroxybenzoesäuremethylester und -propylester wobei Glycerin und Carboxymethylcellulose-Natriumsalz gelöst. Es 10 wird auf Raumtemperatur abgekühlt und unter Rühren der Wirk-

stoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des Zuckers, der Sorbitlösung und des Aromas wird die Suspension zur Entlüftung unter Rühren evakuiert.

5 ml Suspension enthalten 50 mg Wirkstoff.

15 Beispiel I

Tabletten mit 150 mg 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin

Zusammensetzung:

]	. Tablette enthält:	
20	Wirksubstanz	150,0 mg
	Milchzucker pulv.	89,0 mg
	Maisstärke	40,0 mg
	Kolloide Kieselgelsäure	10,0 mg
	Polyvinylpyrrolidon	10,0 mg
25	Magnesiumstearat	1,0 mg
		300.0 mg

Herstellung:

Die mit Milchzucker, Maisstärke und Kieselsäure gemischte Wirksubstanz wird mit einer 20%igen wäßrigen Polyvinyl-

- 24 -

pyrrolidonlösung befeuchtet und durch ein Sieb mit 1,5 mm-Maschenweite geschlagen.

Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesium-5 stearat gemischt. Aus der Mischung werden Tabletten gepreßt.

25 -

Tablettengewicht: 300 mg Stempel: 10 mm, flach

Beispiel K

Dragées mit 75 mg 6-Benzylthio-4,7-dimorpholino-2-piperazino-10 pteridin

	•	
	l Dragéekern enthält:	
	Wirksubstanz	75,0 mg
	Calciumphosphat	93,0 mg
	Maisstärke	35,5 mg
15	Polyvinylpyrrolidon	10,0 mg
	Hydroxypropylmethylcellulose	15,0 mg
	Magnesiumstearat	<u>1,5 mg</u>
		230,0 mg

Herstellung:

- 20 Die Wirksubstanz wird mit Calciumphosphat, Maisstärke, Polyvinylpyrrolidon, Hydroxypropylmethylcellulose und der Hälfte der angegebenen Menge Magnesiumstearat gemischt. Auf einer Tablettiermaschine werden Preßlinge mit einem Durchmesser von ca. 13 mm hergestellt, diese werden auf einer geeigneten
- 25 Maschine durch ein Sieb mit 1,5 mm-Maschenweite gerieben und mit der restlichen Menge Magnesiumstearat vermischt. Dieses Granulat wird auf einer Tablettiermaschine zu Tabletten mit der gewünschten Form gepreßt.

Kerngewicht: 230 mg

30

Stempel: 9 mm, gewölbt

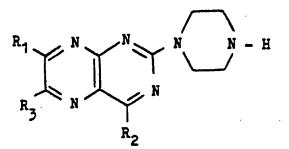
Die so bergestellten Dragéekerne werden mit einem Film überzogen, der im wesentlichen aus Hydroxypropylmethylcellulose besteht. Die fertigen Filmdragées werden mit Bienenwachs geglänzt.

Dragéegewicht: 245 mg.

5

Selbstverständlich können alle übrigen Verbindungen der allgemeinen Formel I als Wirkstoffe in den vorstehenden galenischen Zubereitungen eingesetzt werden.

1 17.54 --: : • ? 11211


. . .

. . .

: ·

Patentansprüche

1. 2-Piperazino-pteridine der allgemeinen Formel

/ ,(I)

,(I)

in der

R₁ eine Phenylalkylamino-, Alkylamino- oder Dialkylamino-5 gruppe, eine Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe,

R₂ eine Dialkylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder l-Oxidothiomorpholinogrppe und

R3 ein Halogenatom, eine Alkoxy-, Alkylthio-, Phenylalk10 oxy- oder Phenylalkylthiogruppe, wobei der Alkylteil jeweils
1 bis 3 Kohlenstoffatome enthalten kann, bedeuten und deren
Säureadditionssalze.

2. 2-Piperazino-pteridine der allgemeinen Formel I gemäß Anspruch 1, in der

15 R₁ eine Dimethylamino-, Benzylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder l-Oxidothiomorpholinogruppe,

R₂ eine Dimethylamino-, Piperidino-, Morpholino-, Thiomorpholino- oder 1-Oxidothiomorpholinogruppe und

- 27 -

R₃ ein Chlor- oder Bromatom, eine Alkoxy- oder Alkylmercaptogruppe mit jeweils 1 bis 3 Kohlenstoffatomen im Alkylteil, eine Benzyloxy- oder Benzylmercaptogruppe bedeuten, und deren Säureadditionssalze.

3. 2-Piperazino-pteridine der allgemeinen Formel I gemäß Anspruch 1, in der

R₁ und R₂, die gleich oder verschieden sein können, je eine Dimethylamino-, Morpholino-, Thiomorpholino- oder l-Oxidothiomorpholinogruppe und R₁ auch eine Benzylaminogruppe und

R₃ ein Chloratom, eine Alkoxy- oder Alkylmercaptogruppe mit jeweils 1 bis 3 Kohlenstoffatomen im Alkylteil, eine Benzyloxy- oder Benzylmercaptogruppe bedeuten, und deren Säureadditionssalze.

15 4. 2-Piperazino-pteridine der allgemeinen Formel I gemäß Anspruch 1, in der

R₁ und R₂ je eine Dimethylamino-, Morpholino- oder 1-Oxidothiomorpholinogruppe und R₁ auch eine Benzylaminogruppe und

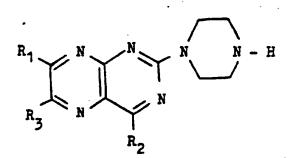
20

5

10

R₃ ein Chloratom, eine Methylmercapto- oder Benzylmercaptogruppe bedeuten, und deren Säureadditionssalze.

5. 6-Benzylthio-4,7-dimorpholino-2-piperazino-pteridin und dessen Säureadditionssalze.


25

6. 6-Chlor-4,7-bis-(dimethylamino)-2-piperazino-pteridin und dessen Säureadditionssalze.

7. 6-Benzylthio-4,7-bis-(dimethylamino)-2-piperazino-pteridin und dessen Säureadditionssalze. 8. Physiologisch verträgliche Säureadditionssalze der Verbindungen gemäß den Ansprüchen 1 bis 7 mit anorganischen oder organischen Säuren.

 9. Arzneimittel, enthaltend eine Verbindung gemäß den An 5 sprüchen 1 bis 7 oder ein physiologisch verträgliches Säureadditionssalz hiervon neben einem oder mehreren inerten Trägerstoffen- und/oder Verdünnungsmitteln.

10. Verfahren zur Herstellung von 2-Piperazino-pteridinen der allgemeinen Formel

,(I)

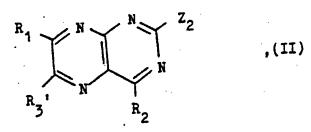
,(I)·

10 in der

R₁ eine Phenylalkylamino-, Alkylamino- oder Dialkylaminogruppe, eine Piperidino-, Morpholino-, Thiomorpholino- oder l-Oxidothiomorpholinogruppe,

R₂ eine Dialkylamino-, Piperidino-, Morpholino-, Thiomor-15 pholino- oder 1-Oxidothiomorpholinogrppe und

R₃ ein Halogenatom, eine Alkoxy-, Alkylthio-, Phenylalkoxy- oder Phenylalkylthiogruppe, wobei der Alkylteil jeweils l bis 3 Kohlenstoffatome enthalten kann, bedeuten und von deren Säureadditionssalzen, insbesondere


20 von deren physiologisch verträglichen Säureadditionssalzen mit anorganischen oder organischen Säuren, dadurch gekennzeichnet, daß

0134922

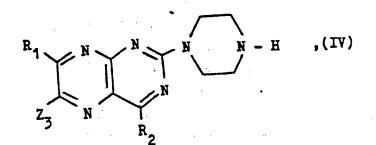
,(II)

,(IV)

a) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R_3 ein Halogenatom darstellt, eine Verbindung der allgemeinen Formel

in der

5 R_1 und R_2 wie eingangs definiert sind,


R3' ein Halogenatom und

Z₂ eine nucleophil austauschbare Gruppe wie ein Halogenatom bedeuten, mit einem Piperazin der allgemeinen Formel

$$H = N N = X$$
,(III), (III)

in der

- 10 X ein Wasserstoffatom oder einen hydrolytisch abspaltbaren Schutzrest darstellt, umgesetzt und erforderlichenfalls anschließend der verwendete Schutzrest abgespalten wird oder
 - b) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R3 eine Alkoxy-, Alkylmercapto-, Phenylalkoxy-
- 15 oder Phenylalkylmercaptogruppe darstellt, eine Verbindung der allgemeinen Formel

in der R₁ und R₂ wie eingangs definiert sind und

- 30 -

Z₃ eine nucleophil austauschbare Gruppe wie ein Halogenatom darstellt, mit einer Verbindung der allgemeinen Formel

31

R₃' - H , (V)

in der

5

R₃' eine gegebenenfalls durch eine Phenylgruppe substituierte Alkoxy- oder Alkylmercaptogruppe darstellt, wobei der Alkylteil jeweils 1 bis 3 Kohlenstoffatome enthalten kann, oder mit dessen Alkalisalz umgesetzt wird

und gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I in ihr Säureadditionssalz,

10 insbesondere in ihr physiologisch verträgliches Säureadditionssalz mit einer anorganischen oder organischen Säure, übergeführt wird.

:

EUROPÄISCHER RECHERCHENBERICHT

0134922

EINSCHLÄGIGE DOKUMENTE			EP 84106993.3		
Kztegorie		nts mit Angabe, soweit erforderlich. geblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.3)	
D,A	<u>US - A - 2 940</u>	972 (ROCH)	1,9.10	C 07 D 475/08	
		Zeilen 15-55 [°] *		A 61 K 31/50	
				•	
A	<u>FR - A - 1 352</u>	111 (LAB. LUMIERE)		· ·	
A	CHEMICAL ABSTR 21, 22. Novemb Ohio, USA	ACTS, Band 85, Nr. Per 1976, Columbus,			
	derivatives. I substituted 6,	N et al. "Pteridine . Synthesis of some 7-diarylpteridines" lte 1, Zusammen- 0 035y			
	& Arm. Khim. Z (1976)	h., 29(4), 337-41			
				RECHERCHIERTE	
				SACHGEBIETE (Int. CIX) 4	
				C 07 D 475/00	
				·	
				•	
			• ·		
	Recherchenort	de für alle Patentansprüche erstellt.	L		
	WIEN	Abschlußdatum der Recherche 09–10–1984		Prüfer Hochuatised	
X: von b Y: von b ande	EGORIE DER GENANNTEN D seonderer Bedeutung allein t seonderer Bedeutung in Vert ren Veröffentlichung derseibe ren Veröffentlichung derseibe rehrittliche Offenbarung	OKUMENTEN E : ätteres netrachtet nach de bindung mit einer D : in der A	im Anmeideda Anmeidung anj	HOCHHAUSER ent; das jedoch erst am oder tum veröffentlicht worden ist geführtes Dokument angeführtes Dokument	